SAMPLE PROBLEMS FOR THE TAKE-HOME COMPONENT OF THE COMPREHENSIVE EXAM

Problem 1. Let \(x_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln n \) \((n = 1, 2, 3, \ldots)\). Prove that the sequence \(\{x_n\} \) converges.

Hint: Show, first, that \(x > \ln(1 + x) \) for any \(x > 0 \). Then show that the sequence \(\{x_n\} \) increases and \(x_{n+1} - x_n < \frac{1}{2(n+1)^2} \). Use the theorem about the convergence and divergence of \(p \)-series to complete the proof.

Problem 2. (2 points). Let \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) be absolutely convergent series of real numbers. Prove that the series \(\sum_{n=1}^{\infty} \sqrt{|a_n b_n|} \) converges.

Problem 3. Prove that if a function \(f(x) \) is continuous on a segment \([a, b]\) and \(\int_a^b f(x)dx = 0 \), then there exists a point \(c \in (a, b) \) such that \(\int_a^c f(t)dt = f(c) \).

Hint: Apply Rolle’s Theorem to the function \(g(x) = e^{-x} \int_a^x f(t)dt \) \((a \leq x \leq b)\).

Problem 4. Prove that the function \(f(x) = \log_x (x + 1) \) decreases on the interval \((1, +\infty)\).

Problem 5. Let functions \(f(x) \) and \(g(x) \) be continuous on an interval \([a, b]\). Prove that if \(\int_a^b f^2(x)dx = 0 \), then \(\int_a^b f(x)g(x)dx = 0 \).

Hint: Show, first, that \(\int_a^b (tf(x) + g(x))^2 dx \geq 0 \) for any real number \(t \). Then show that \(2 \left| \int_a^b f(x)g(x)dx \right| \leq t \int_a^b f^2(x)dx + \frac{1}{t} \int_a^b g^2(x)dx \) for any \(t > 0 \).

Problem 6. Determine whether the series \(\sum_{n=2}^{\infty} (-1)^n \int_n^{n+1} \frac{dx}{\ln^2 x} \)
is absolutely convergent, conditionally convergent, or divergent.

Problem 7. Let \(f(x, y) = \sqrt[3]{xy} \) be a function of two independent real variables \(x \) and \(y \). Find all directions \(u \) in which the directional derivative \(D_u f(0, 0) \) of the function \(f(x, y) \) at the point \((0, 0)\) exists.

Problem 8. Find all \(2 \times 2 \)-matrices \(A \) with real entries such that \(A = A^{-1} \).

Problem 9. Let \(G \) be a group with identity \(e \). Prove that if \(G \) has less than five subgroups (including the trivial subgroups \(G \) and \(\{e\} \)), then the group \(G \) is cyclic.

Problem 10. Let \(\mathbb{P}_n \) \((n \) is a positive integer\) be the vector space of all polynomials with real coefficients whose degree is less than \(n \) \((\mathbb{P}_n \) is considered as a vector space over the field of real numbers \(\mathbb{R} \)). Let \(V = \{ f(x) \in \mathbb{P}_n \mid f(1) = 0 \} \). Check that \(V \) is a vector subspace of \(\mathbb{P}_n \) and find a vector subspace \(W \) of \(\mathbb{P}_n \) such that \(\mathbb{P}_n = V \oplus W \) \(\) (that is, \(\mathbb{P}_n \) is the direct sum of \(V \) and \(W \)).

Problem 11. Suppose that the order of some finite Abelian group \(G \) is divisible by 42. Prove that \(G \) has a cyclic subgroup of order 42.

Problem 12. Consider the linear transformation

\[
L(x) = \det (x, v_2, v_3, ..., v_n)
\]

from \(\mathbb{R}^n \) to \(\mathbb{R} \), where \(v_2, v_3, ..., v_n \) are linearly independent vectors in \(\mathbb{R}^n \). Describe the range and the kernel of this linear transformation, and determine their dimensions.